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Abstract 

In the presence of a Chern-Simons term, a single Dirac monopole induces 

a current that extends throughout space-time. The Dirac string acquires a 

constant charge per unit length, which should confine monopoles and anti- 

monopoles by a linear potential. The monopole of ‘t Hooft and Polyakov is 

generalized to include a Chern-Simona term for the gauge field, and the string 

tension for these monopoles is calculated. 
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Topologically massive gauge theories - gauge theories in 2fl dimensions with a 

Chern-Simons’ mass term - provide examples of some extraordinary phenomena.*-‘l 

In this note, I consider what happens to magnetic monopoles in these theories. 

In Sec. I, I consider Dirac monopoles in the abelian theory. Henneaux and 

Teitelboims have shown that for a Dirac monopole to be a solution of the field 

equations, a current induced by the monopole must be included. I extend their 

analysis to show that for a single Dirac monopole, the induced current is of infinite 

range: for a spherical shell of radius R about the monopole, the current flowing in 

through this shell is a constant, balanced by the current flowing out through the 

Dime string. 

The abelian example helps both to motivate and to explain the results of Sec. II. 

‘t Hooft’ and Polyakov 8,g showed that magnetic monopoles are produced when an 

SO(3) gauge theory is spontaneously broken to U(1). I cons: -er how the monopole 

changes when a Chern-Simons term for the SO(3) gauge field is added to the action. 

I argue that there is a monopole solution that is regular everywhere, but find that 

the action for a single monopole, S,w, is infinite: if R is the radius of space-time, 

the action diverges linearly in R, SM - aR as R - co. 

This divergence can be understood by remembering that over large distances, by 

a gauge rotation a nonabelian monopole can always be treated as if it were effectively 

abelian. Since the total charge induced by a Dime monopole grows linearly in R, it 

is not surprising that the action of the underlying nonabelian field behaves in the 

same way. Alternately, this linear divergence can be viewed as the self-energy of the 

charged Dirac string. A monopole antimonopole pair does have finite action S,,. 

For a separation R that is large, S,, - OR - so o is precisely the string tension 

which measures the confinement of these nonabelian monopoles. 

For the abelian theory without monopoles, there is no relation between the 

Chern-Simons mass m and the gauge coupling e. In the nonabelian theory, topo- 

logical gauge invariance requires 4nm/g*(- q) t o b e an integer; g is the nonabelian 

coupling constant. For the abelian theory with Dirac monopoles, following Alvarezn 

and Henneaux and Teitelboims it can be shown that gauge invariance requires 

xm/e* to be an integer. In Sec. III, I show how in the presence of a Z(2) monopole 

in an (unbroken) SU(2) gauge theory, q must be not just an integer, but an even 

integer. While the usual quantization condition on q is related to the one cocycle of 
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the gauge group, in the presence of a Z(2) monopole, the two cocycle of the group 

also enters. 

Throughout this work, I assume the conventions and notation of Refs. 3 and 4. 

I. Dirac Monopoles 

I first review how to introduce Dirac monopoles’ in 2fl dimensions when there 

is no Chern-Simons term. Given the field strength F,,” = a,,A, - aYAp, and its dual 

?,, = &,vXFYX, the field equations in the absence of monopoles are 

a,Ffi” = jy , a,P = 0. (1.1) 

j” is the usual current density and is conserved, a,,j@ = 0. 

In 2+1 dimensions, monopoles are points not in space but in space-time, with 

a density k that is a space-time pseudoscalar. For the time being, I prefer to avoid 

Dirac strings by using a (pseudoscalar) monopole potential 4. I define a new field 

strength Grvr 

G,, = FFv + +A4 (1.2) 

For k # 0, the field equations are 

a,G’” = jy , a,& = k . (1.3) 

Of course, 4 is an unphysical degree of freedom, and could be eliminated by intro- 

ducing a Dirac string for each monopole. This is possible because the equations for 

A,, and 4 decouple - a,,Gs” = a,F’” = j” and a,G@ = a24 = k. 

With a Chern-Simons term, but without monopoles, the field equations in Eu- 

clidean space-time are 

a,F’” + i&~ = j” , a,@ = 0 (1.4) 

To include monopoles, the natural thing to do in Eq. (1.4) is to replace F” by GpY, 

and F by es. This cannot be the whole story, however, for if one takes -&I 

a,G”” + imi? = jy , 
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then the divergence of this equation gives ima,~!?’ = 0 - so k = O! To avoid this, 

Henneaux and Teitelboims add a new term to the current, j&. The complete field 

equations are then 

a,G’” + im@ = j” +j& , 

a,& = k. 

(1.5) 

(1.6) 

As before, a,& = a*4 = k, but for Eq. (1.5) to be consistent, jh must satisfy 

a,jL = ima* = ink. (1.7) 

jh represents a current which is induced by the monopole. I take the obvious 

solution of Eq. (1.7), 

j& = imd’q5 . (1.8) 

Then Eq. (1.5) reduces to ~,,F~” + ir&’ = j”, and as before the equations for 

A,, and 4 decouple. Note that the induced current jh is imaginary in Euclidean 

space-time and real in Minkowski space-time. 

The field equations of Eq. (1.5) and (1.6) are generated by the Lagrangian 

L = aGiv - ~P’AA,&A~ + j’A, 

+ (j& - imP~)A, + 4k (1.9) 

The total monopole current that couples to the vector potential A,, is .I& = j& - 

imap4. While the induced current j& is not conserved, the total monopole current 

.I; is; indeed, from Eq. (1.8) J& vanishes identically. Thus the action formed from 

Eq. (1.9) is gauge invariant - even at points where there are monopoles - up to 

the usual terms that depend upon the boundary of space-time. As will be seen in 

Sec. III, these surface terms can be significant if there are monopoles about. 

It is instructive to solve for the example of a single Dirac monopole. Given a 

monopole of strength go at the origin of space-time, 

k = g&(Z) . (1.10) 

Then 

(1.11) 
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r = @, and 
im 5’ j; = .--gM-, 
4s r* 

(1.12) 

5~ = z’/r. If a surface encloses the monopole, the induced current flowing through 

the surface is J j$d*S“ = -imgM. 

4 can be eliminated at the expense of a Dirac string. (For a given time slice, 

the string is at best a “Dirac point”.) Then & = (g~/4a)S‘/r* and j& is as in 

Eq. (1.12), except on the string. As the string carries ?@, it must also carry an 

induced current, j$ - +img&‘, where t’ is the tangent vector to the string. In 

the string description of the monopole, current conservation is preserved because 

the induced current flowing into a surface which encloses the monopole (but not 

the string) = --imgM, which is cancelled by an induced current = +imgM flowing 

out through the string. 

The necessity of introducing the induced current j& is best seen in the string 

description of the monopole. The crucial point is that with a Chern-Simons term, 

&‘ appears directly in the field equation a,F@” + imp = j”. Because of this term, 

when m # 0 currents j” produce a flux for $’ M.s What happens with a magnetic 

monopole is the converse of this: flux producing a current. To have a,,$’ - @(z), 

Fr - 3/r*, so away from the monopole and its string, if the monopole is to be 

a solution of the equations of motion, there must be an induced current. Current 

conservation then dictates the current carried by the Dirac string. 

There is an analogy to the current jk in 3$-I dimensions. Witten” has shown 

that when the O-parameter is nonzero, magnetic monopoles acquire an electric 

charge - 0. While this is something like what happens here, there is an important 

and obvious distinction. In 3fl dimensions for 0 # 0, the charge is concentrated on 

the monopole. With a Chern-Simons term in 2fl dimensions, the current induced 

by the monopole runs throughout space-time, including along the string. 

As the Dirac string carries a current when m # 0, it becomes a physical entity. 

It is natural to guess that, since the string has a given charge per unit length, the 

electromagnetic self-energy of the string will give rise to some mass per unit length 

cr. cr is then the coefficient of a confining, linear potential for a straight string 

between a monopole antimonopole pair. 

This confinement of monopoles by physical strings is similar to what happens to 
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monopoles from the Higgs effect. If one has Dirac monopoles in an U(1) gauge group 

that is spontaneously broken, the monopoles are confined by a linear potential. 

However the photon gets a mass - from either the Chern-Simons term or the 

Higgs effect - naively the confinement of monopoles can be viewed as the result 

of the physical vacuum being unable to support the long-range U(1) fields of a 

monopole. 

This explanation is a bit glib. When the U(1) symmetry is broken, the Dirac 

string represents a tube of unbroken U(1) flux. The degrees of freedom for this 

string are directly related to those fields which are responsible for the symmetry 

breaking; e.g., the monopoles’ string tension is proportional to the difference in the 

action density between the broken and unbroken phases. 

In contrast, with a Chern-Simons term the string is only visible because it carries 

a current. The Chern-Simons term does not break the gauge symmetry nor does it 

add new degrees of freedom - it is simply inconsistent to have an invisible Dirac 

string in its presence. Further, there is no string tension between the monopoles 

until electromagnetic self-energies are computed. 

Dirac monopoles are point particles, so in the abelian theory all self-energies 

diverge. In the next section, I consider an SO(3) gauge theory which is sponta- 

neously broken to U(1). For the monopoles in this theory, the vacuum expectation 

value of the Higgs field provides a natural length scale for their size. This cuts off 

the ultraviolet divergence in the monopole self-energy, and so allows for the direct 

computation of the string tension 6. 

II. ‘t Hooft-Polyakov Monopoles 

Consider an SO(3) gauge theory which is spontaneously broken to U(1) by an 

isotriplet Higgs field. To look for a magnetic monopole in the unbroken U(l), I take 

as an ansatz 

h”(z) = Ph , (2.1) 

for the Higgs field, and 

A;(“) = ; (c o&‘(l - q&) + 6”‘$2 + (rA - 452)~“i”) (2.2) 
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for the gauge field. I assume that the functions h, 41, &, and A all depend only on 

the radius r = @. 

Equations (2.1) and (2.2) are the most general solutions which are invariant 

under combined rotations of isospin and space-time. The form of this & is 

preserved under an abelian subgroup of gauge rotations generated by n-6, 

62.b = exp(i f?. Z/2) , (2.3) 

f = f(r), @ = the Pauli matrices. The gauge transformed 2, = nii(a, + Aa)%, 

with 

J1 = &cosf+&sinf 

$2 = -&sinf+&cosf 

ii = A-f’, (2.4) 

For the monopole of ‘t Hooft’ and Polyakov,s only h and & are nonzero, with 
4s = A = 0. It will be seen that when a Chern-Simons term for the gauge field is 

added to the action, it is crucial to consider the full ansatz of Eq. (2.2). 

The total action S is a sum of three terms, S = So + S,,, + S,,. S’s is the usual 

action for the gauge field,rs 

SO = -$ / d3z tr(F,,yFPY) 

zz. $ /,- dr [(d: + -&)* + (4: - 41)~ + &(I- 4; - &)‘I . (2.5) 

S,,, is the contribution of the Chern-Simons term,‘* 

s, = 1 7 
/ 

d3z(-im)c’YX tr A&Ax + iA,A,Ai 
> 

4?r m = 910 / dr [im(dih - 4% + 4 - 41 - 44 - +:I] . (2.6) 

Lastly, S’h involves the Higgs fields, 

sh = $1 d3z [+,h”)* - $*h”h” + +z”h”)*] 
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z-z ;(h’)* + h*(+; - &) - !+* -+ ?$‘*] (2.7) 

In Eqs. (2.5)-(2.7), A; and h” are scaled by l/g relative to Refs. 3 and 4. I work 

in the regime of weak coupling, where the dimensional couplings g2 and Xg’ (A is 

dimensionless) are much less than the masses m and p, m and n > 0. 

Under the gauge transformation of Eq. (2.4), S, + &,;,, 

s, = s, 7 Fi [~*(cos f - 1) - &sin f + fl irn 
r=o (2.8) 

Consider the class of gauge transformations for which f(0) and f(co) are each equal 

to 2r(integer). From Eq. (2.4), such transformations do not alter 41 or $2 at either 

r = 0 or co; from Eq. (2.8), they do change the action by 2rri(4?rm/gz)(integer). 

Thus within the ansatz of Eq. (2.2), these are the topological gauge transformations 

which are responsible for quantizing Q = 4?rm/g* as an integer. This is the usual 

condition on Q, and it is not altered by the presence of a monopole. This is unlike 

Dirac monopoles,sJs or Z(2) monopoles in SU(2) (Sec. III), where monopoles do 

change the quantization condition. 

From Eq. (2.8), it is possible to choose a “unitary” gauge, in which 42 = 0 

everywhere. Henceforth I set 4~ = 0, and redefine +i - 4. The Chern-Simons term 

becomes 

/ om dr[-im A( 1 - @)I (2.9) 

Equation (2.9) shows why it is necessary to consider the general ansatz of Eq. (2.2). 

If the usual monopole ansatz was assumed, $2 = A = 0, one would have concluded 

that the monopole was unaffected by the Chern-Simons term, S, = 0. But because 

S,,, is linear in A, S, will not be extremal with respect to small variations in A at 

A = 0 unless 4 = 1 - and A; = 0. 

This just means that when m # 0, the stationary point of the action has A # 0. 

For I$* = 0, Ss has a term - ArcA*. Since no derivatives of A appear, we can solve 

for A, 

(2.10) 

Substituting this back, we obtain the gauge field action found by d’Hoker and 
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Vinet,‘* 

so + s,,, = 5 km dr [ (&)* + (’ -442)2 (; + $)] (2.11) 

Because A is imaginary for real I$, the vector potential AZ is complex. While 

worrisome, since the action itself is complex in Euclidean space-time, this seems 

inescapable. Surprisingly, the action we are left with in unitary gauge, Eqs. (2.7) 

and (2.11), is real, and has solutions with real 4 and h. 

The equations of motion for 4 and h are 

#, = d(d2 - 1) + ?(@ - 1) 
r* 4 43 

f h*+ , 

h” + fh’ = 3* + (-p2 + Xh*)h , 

qYr = d24/dr2, etc. 

I claim that there is a regular solution of Eqs. (2.12) and (2.13) which is a U(1) 

magnetic monopole. That a solution is a monopole is actually guaranteed by the 

form of the M. Consider the abelian field strength, FLY:’ 

FLY = ;F;” - ~c,~chGD,hbD.h” 

i” 
Yr -%uo+2 , (2.14) 

as long as h # 0; p; = -ZY’/r* is the dual field strength for a monopole at the 

origin. 

About the origin, the m-dependent term in Eq. (2.12) is small relative to that 

- l/r*. Thus the limiting behavior as r + 0 is the same as when m = 0 : I$ - 

1 + O(r*), and h N O(T). 

At large r, the terms involving l/r and derivatives d/dr can be neglected, so the 

Higgs field behaves as expected - h(r) + h, E m as r -+ 03. By the same 

reasoning, from Eq. (2.12) when m # 0 4 is also nonzero at infinity: d(r) + h& 

asr-oo. 
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by convention, I choose 4(r) + +&.,. From Eq. (2.10), this means that A(r) + A, 

at infinitv. 
im 1 - $2 

A, = z 
4k 

As m is tuned to zero, &., - 6 and vanishes smoothly, whereas A, - ih,/2 

does &. This is not a contradiction: if g* is taken as given, by the topological 

quantization condition m must be an integer 4 times g2/4?r, and so m cannot vanish 

continuously. 

For large r, the corrections to h, and 4, are well behaved: 

h(r) ,:- h, 1 -$‘$+... 

d(r) ,m ~~{1+~[1-91,(l--f)]f+...). (2.17) 

As for the ‘t Hooft-Polyakov monopole, I cannot find an exact solution, but surely 

there is a regular solution that smoothly interpolates between the behavior found 

at large and small r. 

While this solution is regular, it does not have finite action. To evaluate the 

action, the contribution of the trivial vacuum, h(z) = h,, A;(T) = 0, must be 

subtracted. The remainder has a divergence that is linear in R, the radius of space- 

time: 

SO + s”, + 8% 
4n R 

- 910 j( h2Q2 + ti (l - 4”)” 
4 42 + ... (2.18) 

- aR+O(l). (2.19) 

The terms in the action which are not written in Eq. (2.18) do not contribute to 

the linear divergence, Eq. (2.19). 

This linear divergence occurs because when m # 0, A;(Z) is not a pure gauge 

rotation at space-time infinity: C& and A, # 0. For the Dirac monopoles of Sec. I, 

there is a current induced by the monopole at infinity. In the present example, this 

induced current is carried by the Higgs field. For the ansatz of Eqs. (2.1) and (2.2), 

the current for the Higgs field is 

-bh*4 i,” = fp,bx 7 . 
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Hence, because 4, # 0, there is a Higgs current at infinity, j,” - tpobibhk$m/r as 

7 + co. 

AS discussed in my introductory remarks, o is the string tension for a monopoie 

antimonopole pair. From Eq. (2.18), it is easy to read off o: 

o = 2 h;&,, + $(I - &J’ 1 
For small m, 

while for large m, 

4x 
cmz --mkm I 

* 92 
(2.21) 

b7&x eh:, 
- 9 

(2.22) 

Without a Chern-Simons term, in perturbation theory the static potential for the 

unbroken U(1) gauge field is governed by single photon exchange, and is logarith- 

mic in space. Polyakovg has demonstrated how even a dilute plasma of monopoles 

changes the U(1) potential from logarithmic into linear. This occurs because the 

monopoles have Coulombic interactions over large distances, and respond to exter- 

nal currents as a charged plasma. 

With a Chern-Simons term, monopoles and antimonopoles are bound to each 

other so tightly that they do not respond as a plasma, but as a gas of “molecules.” 

Because the U(1) field has a Chern-Simons mass, the perturbative U(1) potential 

is Yukawa-like. Over large distances, this is not altered by the (small) monopole 

molecules. 

There is one point of subterfuge which I should confess to. Equation (2.12) only 

determines the value of 44 at infinity, so the field equations allow not only 4 + &$, 

as r + co, but 4 + +ti&. The solutions I constructed have real 4 and imaginary 

A; if 4 -+ +t;&,, 4, A, and so A; will all be purely imaginary. Unlike the o of 

Eq. (2.20), which is always positive, imaginary 4 can give o < 0; physically, this is 

not sensible. 

I suggest that purely imaginary A; should not be included as saddlepoints in the 

functional integral. To calculate the quantum fluctuations about a complex back- 

ground field, it is necessary to consider how to deform the contour of integration over 

A;(Z). For some solutions, the required deformations of contour will be allowed, 
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while for others, not. I believe that one could sensibly expand about the monopole 

solutions with real 4 that I have constructed (or more precisely, a monopole anti- 

monopole pair), but that an analysis of small fluctuations would exclude any purely - 
imaginary gauge potentials - such as the monopole with imaginary 4. 

I argue this by analogy. Consider a real scalar field 4 with a potential V(4) = 

q24r/2 + Xd4/4, pLz and X > 0. A solution to the field equations is 4; = ktim, 

with an action density V(&) = -#/4X. While V(&) is less than that of the 

perturbative vacuum 4 = 0, surely 4; has nothing to do with the physical vacuum 

for positive pLz and X. 

This reasoning also excludes some of the solutions found by d’Hoker and Vinet,‘* 

who found purely imaginary A;(Z) that are constant in space-time. While these 

solutions have an action density that is negative, because A; is purely imaginary I 

do not think they represent a physical vacuum state. 

III. Z(2) Monopoles 

‘t Hooftr3 has argued that in (unbroken) SU(N) gauge theories, quark con- 

finement in 2fl dimensions occurs due to a condensate of Z(N) monopoles. These 

Z(N) monopoles are effectively abelian configurations, so by Sec. I, adding a Chern- 

Simons term for the gauge field should result in the confinement of the Z(N) 

monopoles. Since the static potential is Yukawa-likeorder by order in perturbation 

theory, and as there are no long-range solutions to the field equations,‘* the lack 

of a significant Z(N) monopole condensate in the vacuum strongly suggests that 

quarks are not confined in topologically massive SU(iV) gauge theories-certainly 

for weak coupling, m >> gr, and probably for any (renormalized) m # 0. 

If Z(N) monopoles are inserted by hand into an SU(N) gauge theory, they 

will alter the allowed values of Q = 4?rm/g *. I specialize to an SU(2) gauge group 

without matter fields, and work at a temperature T f 0.’ At finite temperature, 

A,(Z,t) must be strictly periodic in time, 

A,(Z,t + P) = +AM(c?,t) , 

p = T-i, but since there are no fields in the fundamental representation, the allowed 
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gauge transformations R need only be periodic up to a constant element of Z(2): 

n(z,t + p) = in(c?,t) 

Let fl = exp(w), and assume that at spatial infinity (5. + oo), w approaches a 

constant value. 

I consider a Z(2) monopole at the origin of space (2 = 0) at a time t’, and an 

antimonopole at Z = 0 and a time t”, t” > t’. There are two different ways to run 

the Dirac string between these monopoles; for simplicity, I assume that the string 

runs along the time axis. The first is just to run it from t = t’ up to t = t”. There 

is a second, however: run the string up the time axis from t = t” to t = p. Then, 

using the periodicity in time, run the rest of the string from t = 0 up to t = t’. 

These two ways are topologically distinct, and I assume the second. 

In a background field A,, under a gauge transformation the action for the Chern- 

Simons term transforms ss2,3 

SW8 + s, + 2Xi 
( ) 

T (w + Aw) . 

The winding number w depends only on fl, and is an integer for any compact 

manifold.‘!4 Aw is a surface term, and is a function of both C and the background 

field A,: 

AW = & / d2S’G’YX tr(&fK-‘Ax) , 

d*SJ’ is the surface element for space-time. 

(3.2) 

I evaluate Aw for a special fl, and the A,, of a monopole. I take the monopole 

and antimonopole to be very close to each other, t” - t’. As only the boundary of 

space-time enters into Eq. (3.2), for t” - t’ I can neglect the monopole fields, and 

consider only the effects of the Dirac string. Thus in Eq. (3.2) I can take A, to be 

pure gauge-A,, = n$;l’a,n,jg, 

fh = exp(wM) = exp -ioio3 . 
(’ 1 

a is the angular direction in space, Z = r,(cos a,sin u). Due to the Z(2) string, SZM 

is multivalued’? 

fl,(a + 2n) = 4,(a) (3.4) 
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Since Cl and Rw are periodic in time up to ztl, in Eq. (3.2) the integrals over 

space at t = 0 and p cancel, leaving only the integrals over the spatial boundaries. 

This includes not only spatial infinity, but possibly a small circle of infintesimal 

radius E about the Dirac string at T, = 0. Over these boundaries, w and WM are 

constant elements of the Lie algebra, so 

AW = $ / dS’ i,” dt8 tr(+aowajwM - ajwaowM) 
m 

(3.5) I,=< 

dSi is a surface element for space at r. = c or 03. Integrating & by parts, and 

dropping terms - a,aj (this is allowed for the w and WM I use), 

1 
Aw=- 

a?r= 
d.5’8 tr(w++, - wMajw) 

Aw in Eq. (3.6) is manifestly an integral over the two cocycle of the gauge group. 

I choose an fl similar to that used in Ref. 4: 

fl=exp(-iai6.a) . 

Unlike the fl of Ref. 4, this fl is antiperiodic in time. That is allowed here, because 

there are no fields in the fundamental representation. I take 6 = C?(Z) to be a two- 

dimensional instantoni4 centered on the origin with instanton number=l. I require 

that as Z--t co, 6.5 -+ +u3; then 6. ii; --t -03 as Z + 0. 

Evaluating Aw for this fl gives Aw = l/2. From Eq. (3.1), for the partition 

function to be gauge invariant, Q = 4nm/gz must be not just an integer, but an 

even integer. 

The quantization condition on Q differs in the presence of monopoles because the 

Dirac string carries flux, and when the string pierces the boundary of space-time, 

surface terms such as Eq. (3.2), which are usually negligible, become important. 

For Z(N) monopoles in SU(N), I suspect that the analogous condition is that 

Q must be a multiple of N. My direct but inelegant approach is not the best way 

to show this. 

Similar arguments can be used to derive the quantization condition on m/e2 

for Dirac monopoles in the abelian theory. ‘JO Under a gauge transformation A, - 
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A,, + a&/e, the abelian Chern-Simons term transforms as 

I consider a A which wraps around the time direction in a nontrivial way: A(Z, fl) = 

2n, A(z’, 0) = 0. Taking a monopole antimonopole pair as above, only the contri- 

bution of the Dirac string cutting through t = p matters. For a Dirac monopole of 

unit charge, the flux through the string is 277/e; the action changes by -2xi(r~~/e~), 

so xm/e* must be an integer. 

I have been a bit sloppy in these arguments, since I have neglected the induced 

current which by Sec. I must run through the string. Including it, however, does not 

alter the conclusions: in the abelian case, this current contributes +2ni(2zm/e2) 

to the action, while for the non-abelian, it gives -2ai(4xm/g2). 

In the abelian theory, an alternate argument can be given following Henneaux 

and Teitelboim.6 In Minkowski space-time, the Dirac string carries a real charge 

per unit length Ed = mgM. For a monopole of unit strength, gM = 2a/e; requiring 

eMgM to be 2n (integer) implies that 2rm/es must be an integer. This is less 

restrictive than my condition that Km/c2 be an integer. 

In this section, I have only considered topological gauge invariance at the clss- 

sical level. For the sake of discussion, let me assume that the mass and charge are 

renormalized in the same way when there are monopoles around as not. Because 

monopoles are large gauge fields, this assumption could well be wrong. 

In an SU(N) gauge theory with N, flavors of adjoint fermions of mass mf, 

about the trivial vacuum q is renormalized3*’ as qle,, = Q + N + NNfsgn(m,). (The 

fermions must lie in a representation such as the adjoint so that they do not spoil 

the Z(N) symmetry.) Consequently, if cl is a multiple of N, so is qrcn: topological 

gauge invariance is still maintained in the quantum theory with Z(N) monopoles. 

In the abelian theory without magnetic monopoles, Coleman and Hill’s have 

shown that p E nm/es is only renormalized to one-loop order - p,,, = p + 

$Nrsgn(m,) for fermions of charge e. Apparently, for p,,, to remain an integer 

N, must be a multiple of four. 

More generally, perhaps a consideration of the quantum theory with magnetic 

monopoles could yield a unified-and topological-understanding of all of these 
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results: in the abelian theory, a nonperturbative proof of the theorem of Coleman 

and Hill, and in the nonabelian SU(N) theory, why qIln - q is proportional to N. 
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